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ABSTRACT

Raster scanicomputer graphics displays require the image generated
by the program to be converted to raster scan order. This is almost
always done wusing a large frame buffer memory. An alternative
technique is to substitute for the frame buffer memory enough
processing power to perform the conversion "on the fly" for each frame.
It appears that microprocessors can now provide this processing power
at low cost. One possible implementation of such a raster-scan
conversion algorithm is presented which uses one LSI microprocessor and
one small special purpose processor running concurrently in a pipelined
fashion. With today’s microprocessor technology, this approach is
shown to be feasible and its economics compare favorably with a frame

buffer system of similar performance.

This report will be presented at, and will appear in the proceedings of,
The First Annual Rocky Mountain Symposium on Microcomputers: Systems
Software Architecture. It was prepared as a result of work performed
under NASA Contract No. NAS1-14101 while the author was in residence at
ICASE, NASA Langley Research Center, Hampton, VA 23665.




RASTER-SCAN CONVERSION USING CONCURRENT MICROPROCESSORS

I. TINTRODUCTION

Computer graphics display devices can be classified as either
random or raster scan devices. Random scan devices allow the image to
be drawn on the display in any order generated by an application
program. For line drawings, this 1is often specified by a list of
vector endpoints. Raster scan devices are constrained to display the
image according to some specific order, usually left to right along
horizontal scanlines. Therefore, before displaying an image generated
by a program, the data must somehow be sorted so that it is available
to the raster display device in the proper order. This raster scan
conversion process poses an added complexity for raster scan displays.

However, once this conversion is accomplished, raster scan displays

have some advantages over random scan.

First, constraining the deflection of a CRT display to follow a
fixed raster-scan pattern considerably simplifies the analog deflection
electronics needed. Ordinary television receivers are raster scan CRT
devices. Compared to available random scan computer display devices
they are 1inexpensive, provide color, and require much less adjustment

of the analog deflection circuitry. Also they are widely used.

Second, the time required to display one frame with raster scan
devices is a constant (1/30 sec usually). Random scan devices,

however, usually require a display time roughly proportional to the.




total length of all vectors being displayed. Complex pictures may
require too much time to display (over 1/30 sec) and therefore appear
to flicker. On raster scan devices an arbitrarily complex image can be
displayed without flicker provided it 1is specified within the
resolution limits of the raster scan display. Thus raster scan devices
are usually used when it is desirable to display surfaces, which
require considerably more displayed vector length than corresponding
line drawings. However, raster scan devices suffer from a 'stair
stepping" effect when used to draw non-horizontal or non-vertical

lines. Random scan devices do not suffer from this effect.

I1. APPROACHES TO RASTER-SCAN CONVERSION

A frame buffer memory is almost universally used to accomplish the
raster—scan conversion process, buffer memory. One word of this
mernory is assigned to each resolvable (x,y) position on the display sa
that increasing addresses scan the display screen in the raster-scan
order. The contents of any one word of this memory specify the
intensity/color of the associated position on the screen. The frame
buffer memory 1is loaded in any order required by the program with
intensity/color information describing an image. The raster-scan
output is then produced by scanning the memory sequentially from its
lowest to highest address. The operation performed here is actually a
"bucket sort" with each word of the frame buffer being one bucket

capable of holding one datum.

Using a frame buffer memory with high resolution or many

intensity/color levels requires much memory. For example, a 512x512




resolution with 512 intensity/color combinations requires
512x512x9 = 2,359,296 bits of memory. Also, to provide real time
motion, each consecutive frame may display different images. For this,
the memory speed must be fast enough to allow a new image to be written
into the frame buffer within one frame time (1/30 sec). This writing

time is a function of the «complexity of the picture. 1In general,

writing must proceed one word at a time since access 1is random. of
course, if real-time motion 1is not desired, the frame buffer can be

filled slowly, after which it can be displayed for many frames.

An alternative approach is to perform the raster conversion process
by sort techniques that do not require a large memory. With this
approach, enough processing power is required for the entire sort to be

"on the fly" for each frame, even for systems without real-time

done
motion. This approach therefore would seem to be useful for systems
which need real time motion. Also, the complexity of a moving image
that can be handled in real time is now determined by the speed of this
processing rather than by the speed of the frame buffer memory. Using
the approach described below, the speed of the processors must grow
linearly with resolution to display an image of a given complexity.
Frame buffer memory size and speed grow as the square of the
resolution. Thus the processor sort approach appears useful for
systems requiring high resolution. Jordan and Barrett([l] proposed one
such conversion algorithm for 1line drawings. Earlier, Erdahl (2]
described the design of hardware for executing the last portion of the
scan conversion process for surface drawings. More recently, Meyer[3]

has reported on a system in operation with hardware for this purpose.



This hardware, made by Staudhammer aund associates{4], geuerates video

in real time from run length encodings of the images.

Large frame buffers for high resolution diplays are becomnming
economically feasible due to the droppiag cost of memory for frame
buffers. However, processor cost is also dropping with the advent of
inexpensive microprocessors. In the following section, a method of
raster-scan conversion is presented which could be implemented wusing
several small procéssors running concurrently., Such a system would be
capable of moderate resolution and real time motion of modcrately
complex images. It is argued that the processors now becomming readily
available have the capability of performing the raster scan conversion
process and that because of their cost relative to memory costs, this
approach currently compares favorably with a frame buffer system of

similar parameters.

III. RASTER-SCAN CONVERSION PROCEDURE

In order to show the feasibility of using concurrent processors to
implement the approach described 1in this section, we will assume
reasonable resolution and picture complexity parameters, determine the
required processing speeds, and then present one possible design using
these processors that could be implemented from readily available
nicroprocessor components. Finally we make a comparison of hardware

requirements of this implementation with the requirements of a frame

buffer implementation. Specifically,




1. Assume 512x512 resolution. This is adequate for many purposes.

2. Assume 9 bits of intensity/color levels (say 8 levels of each of 3
colors).

3, Assume the picture complexity is at most 2000 straight vectors (for
line drawings) or 2000 surface edges (in the case of surface
drawings). This number was obtained by counting lines on several
drawings of aircraft and spacecraft obtained from engineers
involved in vehicle analysis at NASA Langley Research Center.

4., Assume the maximum number of vectors (surface edges) that
intersect any horizontal scan line is 500. This is 25 percent of
the entire picture. The drawings mentioned in (3) above had at
most 13 percent of their vectors on any one scan line.

5. Assume a refresh rate of 30 frames/second.

In order to compare the cost of implementing this raster-scan
conversion method with the frame-buffer method, we must be able to
compare processors with some equivalent amount of memory. A quick
search through the microcomputer literature at the time of this writing
reveals that a microprogrammable processor can be obtained for approxi-
mately the cost of 24K bytes of MOS memory. Such processors are today
available on a few LSI circuits, are microprogrammable, can be imple-
mented with any convenient word size (bit sliced), and can execute 5 to
10 million microinstructions per second. A processor of this class
with an appropriate word size will hereafter be called a "fast micro-
processor." Their cost relative to memory cost ma& or may not remain
constant in the future. At a low level both processors and memory bits
may be regarded as some number of logic gates to be fabricated onto one
LSI integrated circuit. For this reason one might expect the costs of

processors and memory to be at least somewhat correlated.



A. INPUT DATA AND Y-SORT PROCESSOR

The input data describe, in an encoded manner, the image to be
converted to raster-scan. This consists mainly of the endpoints of
vectors along with their intensity/color. To generate surtacc imapes,
these vectors are taken to represent the left edge of the surface, in a
manner described in section C. For this example, endpoints are given
as pairs of 9 bit integers of (x,y) screen coordinates. A vector from
(Xs,¥s) to (Xe,Ye) of intensity 1 1is described by 5 9-bit words

consisting of:

Xs Ys Xe Ye I

Without loss of generality, assume Ys ¢ Ye. We assume the existence of
some computer capable of generating this list every 1/30 second if real
time motion is required of the entire image. All transformations
(rotation, scaling, etc.) are assumed to have been performed on this

data. Alphanumeric data and other graphics commands could easily be

accomodated, but are not relevant for this discussion.

The raster-scan conversion procedure described here consists of
several sort and merge operations on the image data. Referring to
FIGURE 1, we first sort the input data into ascending order of Ys,
using a Y-sort microprocessor. This produces the Y-sorted vector list.

Next, using a scan line processor, we produce a standard raster scan




video signal. Each of the pipelined processors communicates with the
next one by shared memory buffers. Double buffers are used so that the
Y-sort processor can be processing frame n+l while the scan line
processor is processing frame n from the second buffer. For the Y-sort
processor, a bucket sort would be appropriate with 512 buckets, each of
variable size. This suggests a data structure consisting of a set of
512 linked lists, one list corresponding to the Y value of each scan
line. Also, while sorting, the Y-sort processor should replace Xe with
dx/dy = (Xs-Xe)/(¥Ys-Ye), calculated to 18 bits percision. A moment’s
reflection will show that 18 bits are needed to specify the slope with
the same precision contained in the original data. To process 2000
vectors in 1/30 second requires a processor fast enough to process one
vector each 33 us, on the average. This corresponds to about 200 to
300 instruction executions. A count of executed imstructions in a
small program written for the INTEL 3000 series[5] microprocessor shows
that this "fast microprocessor' can handle the sort, slope calculation,
and linked 1list manipulation in the required time. This microprogram
performed the division in about 150 instructions, leaving 50 to 150
instructions for the rest of the processing. The memory requirements
of this Y~-sort are 24000 9 bit words. This provides for two buffers
each capable of holding the sorted data lists. Double buffering is
used so that the Y-sort processor can sort the data for frame n+l using
one buffer while the scan line processor (described below) processes
data for frame n using the other buffer. Each list entry consists of
five 9-bit words of data and one 9-bit link pointer to the next entry

in the list. Ys need not be stored with each vector.




B. SCANLINE PROCESSOR FOR LINE DRAWINGS

As each scan line 1s processed, an ACTIVE LIST of all vectors
intersected by the current scan line is maintained. New entries to the
active list are taken from the top of the sorted vector 1list produced
by the Y-sort processor. Vectors are deleted from the active list

while processing the last scan line which intersects them. Each entry

in the ACTIVE LIST consists of:

Xc dx/dy Ye I

where Xc is initially set to Xs. For line drawings using this method,
there is no need to sort the ACTIVE LIST. Hence the scan line
processor simply processes each entry in the previous scan line’s
active list and then processes entries at the top of the sorted input
data list (if any) that are intersected by the current scan line. The

processing done to an entry from either of these two sources is the

same. It consists of:
1. Calculate Xc’ = dx/dy + Xc.

2. Place intensity/color I in a 512 word scan line buffer at all
x~locations between Xc and Xc’.

3. If this vector will be intersected by the next scan line (i.e.
Ye # y-value of current scan line) place this vector into a

second ACTIVE LIST buffer, replacing Xc by Xc’. Otherwise drop
this vector from the ACTIVE LIST by not placing it into the second

buffer. This second buffer will be used as the primary buffer on
the next scan line.

The memory requirements for this process consist of two buffers




to double buffer the active list each consisting of 2500 9-bit words.
Also, two 512 word scan line buffers for holding the intensities (the

result of this process) are needed.

The speed requirements of this processor are rather high. For a
maximum size ACTIVE LIST of 500 entries, the processor must process one
entry approximately every 130ns. With today’s "fast microprocessor"
speeds, this is an impossible situation. For realistic images, this
maximum size should seldom be reached, thus relaxing the speed
requirement and allowing the use of ome or more "fast microprocessors"
if one is willing to use a statistically average length active list and
several 512 word scan line buffers to feed the video generator while
processing scan lines with long active lists. This would normally have
no effect on real time motion of the images. However, 1if all 1line
buffers were empty when the video generator requested the next line,
the display could not continue at the normal rate. An unmodified TV
display will wusually not operate at a reduced rate. Some type of
display with a variable scan line processing rate would be well suited

for this approach.

However, a relatively simple special purpose hardwired processor
can perform the required function for 500 vectors in real time for each
line. A design of such a unit is given in FIGURE 2. For comparison
purposes, we will assume two scan line buffers and the special-purpose
hardware processor of FIGURE 2. A more detailed design of this
processor has been done using the readily available 740U series logic

family. It 1is implementable for about the hardware cost of




implementing a "fast microprocessor" CPU.

To actually drive a TV or other raster device, a hardware video
generator will also be needed which will accept one 512 word buffer of
intensity information for each scan line and generate the video signal.
A similar video generator is needed for the frame-buffer method also,

so its cost will not be considered in comparing the methods.

C. SCANLINE AND ACTIVE-LIST PROCESSORS FOR SURFACES.

Shaded surface images can be processed in much the same manner as
line drawings. In this case we assume that each vector in the ACTIVE
LIST represents the left side of a planar polygon. This surface is
assumed to extend to the right until reaching the next line to its
right in the ACTIVE LIST. This requires the ACTIVE LIST to be sorted
on Xc from left to right. Note that this representation of surfaces
does mnot contain a separate right side for polygon boundaries, so
overlapping surfaces cannot be represented. If the image data should
contain two overlapping surfaces, one or the other of the surfaces must
be displayed. If we do not display surfaces of less than one raster
unit in width (below the display resolution), then the integer part of
all Xc values for all vectors in the active list at any one time will
be different (except for overlapping surfaces with a common left side).
Thus the active list can be stored as a continuous vector in memory,
using 512 consecutive addresses with each address associated with some
integer value of Xc. New entries can be easily placed in the correct
position in the active list. Entries may change places each scan line

as Xc is updated.
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The scan line processor for this scheme is similar to the processor
for line drawings. A block diagram‘ is given in FIGURE 3. This
processor also merges new active list entries for scan line n+l into
the active list while processing scan line n. These new entries are
easily placed directly into the proper position in the active list.
With 2000 vectors spread over 512 scan lines there will only be about 4
additions per scan line on the average. However, this number could

vary up to 500 additions for some unusual images.

A design that handles either lines or surfaces is only slightly
more complex than either FIGURE 2 or 3, and would be the more
reasonable implementation choice. It is simply the union of the main
parts of both FIGURES 2 and 3 with a few switches located at points

where the two diagrams differ.

Since the active list data is sorted on Xc there is no need for the
512 word scan line buffers as before. Instead a single word register
contains the current beam intensity/color. The processing of the
active list can be synchronized to the current X-value of the r;ster
scan., As the raster sweeps across a scan line from left to right, X
changes by one unit each 132ns., The current active list buffer is
scanned in synchronism at this rate. When encountering a non-empty
entry (i.e. the left side of some surface is encountered), data is
loaded from the active list into a register. The I portion of the data
in this register continually specifies the beam intensity/color. An
adder (which easily works in 132ns) adds dx/dy to Xc, and the register

contents are placed in a new active list buffer at location
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Xc+ dx/dy (provided Ye @ current scan line y-value). This new active

list buffer will be the input buffer for the next scan line.

The memory required for scan line processing of surfaces is two
2048 9-bit word active list buffers (we need not explicitly store the

integer part of X for each active list entry). No 512 word line buffer

is needed.

The cost (complexity) of such a special-purpose processor as
estimated from a design using 7400 series logic, is approximately the
same as for the processor described in section B. A comparable video

generator is also needed as in B.

D. POSSIBLE MODIFICATIONS/ENHANCEMENTS TO THE PROCESS

If the scan line processor was implemented in software or used a
slower inexpensive microprocessor that was not able to execute the
algorithm within one frame time on some complex pictures, a modified
design could be used so that the X position on each scan line where I
changes value would be stored in an encoded manner in a buffer. The

length of this buffer is proportional to the picture complexity, and is

generally much smaller than a frame buffer memory. It could be used to
keep the display refreshed for many frames by a relatively simple
hardware device to generate the video signal. This, of course,

precludes displaying a different image on each frame.

One advantage of partitioning the processing between the Y-sort and

the scan line processors in the manner described above is that several
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hidden surface algorihms which produce raster scan output({6,7,8] uic,
at an intermediate step, an ACTIVE LIST containing the data sorted 1in
the same order as the ACTIVE LIST described above. Thus it would be
possible to replace the scan line processor described above with a more
complex processor that would discover the overlapping surfaces from the
ACTIVE LIST and produce a display with hidden surfaces removed. The
Y-sort processor could still be used to produce the active list. In
this case the I value in the ACTIVE LIST would normally contain an
identification number for each surface. Also, an even number of
entries would appear in the ACTIVE LIST for each surface, corresponding
to the edges where the scan ray enters and exits the surface as it
moves left to right along one horizontal scan line. The intensity of
each different surface is supplied by indexing in an intensity table,
using the surface identification number as index. If such a processor
was not capable of processing the entire image in one frame time, the
intensity change buffer just described could be used to buffer the

image for several frames.

IV, COMPARISON OF FRAME-BUFFER AND PROCESSOR METHODS
Table 1 compares the performance limiting factors of the

frame-buffer and processor approach. A frame buffer for 512x512

resolution requires 262,144 9-bit words of memory. The processor
approach described in this paper requires only 30,000 '9-bit words of

memory (29,000 words for surfaces), or about 1/9 as much memory as the

frame buffer method.

The frame buffer approach requires some processing power to
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generate the intensity patterns for vcectors from their endpoint
descriptions. To meet the 2000 vector per frame specification this
requires a processor capable of processing 1l vector and storing the
results in a frame buffer each l7us. In the processor approach, the
scanline processor performs this function on the fly. The main
difference between methods here is that the processor approach must do
this calculation in real time, whereas the frame buffer approach may do

it more slowly at the expense of real time motion.

The frame buffer approach has no component corresponding to the
Y-sort processor. Therefore, the equipment tradeoff between the two
methods is a Y-sort '"fast microprocessor" and a scan line hardware
processor vs. 232,000 9-bit words of memory and enough host processing
power to generate the intensity patterns for vectors. Since the scan
line processor performs essentially the same algorithm , we may, to a
first approximation, equate the scan line processor to the cost of the
host processing power needed to generate the intensity frame buffer
patterns for individual wvectors. An informal survey of the current
literature shows that 232,000 words of memory has a cost many times
that of a '"fast microprocessor'”. We are considering only component
costs here, supposing the fabrication costs for 232,000 words of memory
is approximately equal to assembly costs of a "fast microprocessor".
This assumption is based on today’s approximately equal integrated

circuit count for both the memory and processor described by FIGURE 3.

V. SUMMARY

The algorithm and suggested implementation using microprocessors is

14




not proported to be the best such algorithm or implementation.
However, it does show the capability of a microprocessor and a small
special purpose processor to perform the raster scan conversion
process. Thus the use of this technique appears feasible.
Economically, we conclude that unless the ratio of processor to memory
costs changes drastically from its current value, implementat ion
without a frame buffer appears to be preferred, based on today’s
component costs, for systems wih high resolution or real time motion.
Less readily comparable differences in the two raster conversion
processes are the maximum picture complexity limits imposed by
processor speeds vs. the maximum real-time motion picture complexity
imposed by frame buffer memory speed and host bit-map generating speed.
Also not readily comparable are the differences in software required by
the loss of a frame buffer and the addition of a vector list describing
the image. The frame buffer allows easy reading of the current image
at a given (x,y) point. Lieberman{ 9] notes that this makes it easy
to discover the edges of any enclosed region in the image, or to find
one’s way out of a maze. On the other hand, the existence of a vector
list describing an image allows transformations to be performed easier.
A frame buffer system by Garrett[10] even includes a vector 1list for
this purpose. Note that in the approach described in this paper,
real-time motion of the entire displayable image is automatic, provided
the host computer or yet another dedicated microprocessor can generate
the input data in real time. On the other hand, with a frame buffer,
any arbitrary memory intensity/color pattern can be displayed (flicker
free), even with moderately slow memory, so long as it does not all

move in real time.
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Performance
parameter effected.

Limited in frame-
buffer approach by:

XY resolution

Complexity of still
picture

Complexity of real-
time motion images.

size of frame buffer

No limit within
resolution.

Ability of host to

generate coordinates in

real time.

Speed of host CPU to
interpolate between
vector endpoints,

Write speed of frame

buffer memory to accept

new image bit map.

TABLE 1.

Limited in processor
approach by:

speed of scanline
processor.

Speed of all processors

Abiliy of host to
generate coordinates
in real time.

Speed of scanline
processor,

Speed of Y-sort
processor.

FRAME BUFFER - PROCESSOR APPROACH COMPARISON
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Scan Line Processor for Surface Drawings
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